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Abstract. In this paper, we investigate the lower bound on the number of gates in a Boolean
circuit that computes the clique function with a limited number of negation gates. To derive strong
lower bounds on the size of such a circuit we develop a new approach by combining three approaches:
the restriction applied to constant depth circuits due to Hastad, the approximation method applied
to monotone circuits due to Razborov, and the boundary covering developed in the present paper.
We prove that if a circuit C' with at most [(1/6)loglogm| negation gates detects cliques of size
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(log m) in a graph with m vertices, then C contains at least 2(1/3)(logm gates.

No non-trivial lower bounds on the size of such circuits were previously known, even if we restrict
the number of negation gates to be a constant. Moreover, it follows from a result of Fischer (Lecture
Notes in Comput. Sci., 33 (1974), pp. 71-82) that if one can improve the number of negation gates
from [(1/6)loglogm] to [2logm| in the statement, then we have P # NP. We also show that the
problem of lower bounding the negation-limited circuit complexity can be reduced to the one of
lower bounding the maximum of the monotone circuit complexity of the functions in a certain class

of monotone functions.
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1. Introduction. There has been substantial progress in obtaining strong lower
bounds on the size of restricted Boolean circuits, such as constant depth circuits or
monotone circuits, that compute certain functions. For example, exponential lower
bounds were derived for the size of constant depth circuits computing the parity
function [7] and for the size of monotone circuits computing the clique function and
other functions ([1, 2, 5, 8, 9, 10, 13]). It is natural to ask if we could use the
approaches developed so far to derive strong lower bounds for a more general model.
In such a generalized model, we consider circuits with a limited number of negation
gates. In fact, it so far remains open to derive non-trivial lower bounds on the size
of a circuit computing a certain monotone function with, say, a constant number of
negation gates [14]. Fischer [6] showed that for any function f on n variables, the size

of the smallest circuit computing f with an arbitrary number of NOT gates and the
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one with, at most, [log(n + 1)] NOT gates are polynomially related (see also [4]). So
if one can prove superpolynomial lower bounds on the size of circuits with at most
[log(n + 1)] NOT gates computing an explicit function in NP, then we have P#NP.

In this paper, we try to obtain superpolynomial lower bounds on the size of
circuits computing an explicit function in NP with O(loglogn) NOT gates rather
than O(logn) NOT gates. More precisely we prove the following: If a circuit C

with at most |[(1/6)loglogm| NOT gates detects cliques of size (logm)3(°8 m)'?

(log m)1/2

n
a graph with m vertices, then C' contains at least 2(1/5)(logm) gates (Theorem
5.1). Note that the problem of detecting a clique in a graph with m vertices will be
written as a Boolean function of n = (’2") variables. We also show that the problem
of lower bounding the negation-limited circuit complexity can be reduced to the one
of lower bounding the maximum of the monotone circuit complexity of the functions
in a certain class of monotone functions. (Theorem 3.2).

To achieve the main results, we develop a new approach by combining three
approaches: the restriction applied to constant depth circuits [7], the approximation
method applied to monotone circuits [10, 11] and the boundary covering developed in
the present paper. A Boolean function f partitions the Boolean cube into two regions,
f71(0) and f~1(1). We can think of the boundary between the two regions, defined
as the collection of pairs of vectors (w,w’) such that f(w) # f(w'), and the Hamming
distance between w and w’ is 1. The idea of the proof of the main theorem is as
follows. First, we prove in Section 3 a theorem showing that the problem of proving a
lower bound on the size of the negation-limited circuit computing a monotone function
f can be reduced to the one of proving a lower bound on the maximum over sizes of
monotone circuits such that the union of boundaries of the functions computed by the
monotone circuits covers the boundary of the monotone function f (Theorem 3.2).
Second, we analyze carefully in Section 4 the proof of Amano and Maruoka [2] that
gives an exponential lower bound on the monotone circuit size of the clique function,
and prove a statement saying that we still need a superpolynomial number of gates
in a monotone circuit that implements even a certain small fraction of the boundary
of the clique function (Theorem 4.1). Finally, we prove in Section 5 a statement
(Theorem 5.1) that no matter what collection of monotone functions we take to cover
the boundary of the clique function, the largest fraction of the boundary covered by
a monotone function in the collection is more than what is needed to apply the result
(Theorem 4.1) in Section 4. This is the most difficult part of the proof.

2. Preliminaries. For w in {0,1}", let w; denote the value of the ith bit of w.

Let w and w' be in {0,1}". We denote w < w' if w; < w} foralll <i <n,and w < w'

ifw<w' and w # w'. Let Ham(w, w") denote the Hamming distance between w and

w', ie., Ham(w,w") = |{i € {1,...,n} | w; # w}}|, where |S| denotes the number of
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elements in a set S. For two Boolean functions f and g of n variables, we write f < g
if f(w) < g(w) for all w € {0,1}™.

A Boolean circuitis a directed acyclic graph with gate nodes (or, simply gates) and
input nodes. The operation AND or OR is associated with each gate whose indegree is
2, whereas NOT is associated with each gate whose indegree is 1. A Boolean variable
or a constant, namely, 0 or 1, is associated with each input node whose indegree is 0.
There is one designated node in a Boolean circuit with outdegree 0, which is called
the output gate. Each gate of the circuit computes a Boolean function in the obvious
way and the function computed by the circuit is the function computed by the output
gate. In particular, a circuit with no NOT gates is called a monotone circuit.

A Boolean function of n variables is monotone if f(w) < f(w') holds for any
w,w" € {0,1}" such that w < w'. Let M™ denote the set of all monotone functions
on n variables. It is well-known that f is monotone if and only if f can be computed
by a monotone circuit. The size of a circuit C, denoted size(C'), is the number of gates
in the circuit C. The circuit complexity (respectively, monotone circuit complexity)
of a function f, denoted size(f) (respectively, sizemon(f)), is the size of the smallest
circuit (respectively, the smallest monotone circuit) computing f. For a function f and
a positive integer ¢, the circuit complexity with t limited negation (negation limited
complexity, for short) of a function f, denoted size.(f), is the size of the smallest
circuit C' that computes f and includes at most ¢t NOT gates. If a function f cannot
be computed with only ¢ NOT gates, then size;(f) is undefined. For a circuit C' and
a gate g in C, let Cy(w) denote the output of the gate g in the circuit C that has the
input w. We sometimes assume that a gate g of circuit C is specified as an output
gate of the circuit C. In such a case, we say the circuit computes the function Cy(w),
which will simply be denoted by C'(w). We say a gate g in a circuit C' separates a
pair of vectors (w,w’) (or simply, a gate g separates (w,w') when no confusion arises)
it Cy(w) =0, Cy(w') =1 and Ham(w,w") = 1. In particular, when g is taken to be
the output gate in C, we simply say that the circuit C separates such a pair (w,w").
Similarly, when a circuit separates a pair we say the function computed by the circuit
separates the pair.

Throughout this paper, the function logz denotes the logarithm base 2 of x.

3. Relationship between Negation-Limited and Monotone Circuit Com-
plexity. In this section, we explore a relationship between negation-limited circuit
complexity and monotone circuit complexity for a monotone Boolean function.

DEFINITION 3.1. Let f be a Boolean function of n variables. A boundary graph
of [, denoted G(f), is defined as follows: G(f) = (V,E) is a directed graph with
V ={0,1}" and E = {(w,w") | Ham(w,w") =1, f(w) =0 and f(w') =1}.

So a boundary graph of f is a graph whose edge set consists of pairs that are
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separated by the function f. Let G; = (V,E;) and G2 = (V, E») be two graphs
on the same set V of vertices. Then the union G; U G2 is defined to be the graph
(V, E1 U E»). Furthermore, we say G contains G2, denoted by Gy D G, if Ey D Es
holds.

THEOREM 3.2. Let f be a monotone function of n variables. For any positive

integer t,

sizey(f) > max { sizemon (f')} ‘ U G(fYDG(f)} ,

> min
F’:{flv--:fa}gMn J'eF’ f'eF!

where a = 271 — 1. Here the functions f; are not necessarily distinct, so F' could be
a multiset. 0

This theorem shows that the problem of deriving lower bounds on the negation-
limited circuit complexity of a monotone function can be reduced to the one of deriving
the maximum monotone circuit complexity over the monotone functions such that the
corresponding boundary graphs of the functions cover that of the original function.
Intuitively, this is because any pair of vectors (w, w') separated by a function f, which
is supposed to be computed by a negation-limited circuit C', belongs to the boundary
of a monotone circuit obtained by restricting outputs of some NOT gates (possibly,
all of the NOT gates) in C, to constants 0 or 1 appropriately and throwing away
the remaining NOT gates in C'. So lines where we place restriction to constants are
outputs of some NOT gates inside of the circuit rather than inputs to the entire circuit
as in the case of the lower bound proof for constant depth circuits.

It is worthwhile to note that the set of all variables F' = {1, ..., x,} satisfies the
condition Uy e G(f") D G(f) for any monotone function f. Hence, if @ > n, that is,
t > log(n + 1) — 1, the right-hand side of the inequality in Theorem 3.2 does not give
a non-trivial lower bound.

Proof of Theorem 3.2. Let f be a monotone function of n variables. Let C
be the smallest circuit that computes f using no more than ¢ NOT gates, that is,
size(C') =size.(f). Without loss of generality, we assume the number of NOT gates in
C is given by t. Furthermore, without loss of generality we assume that the output
gate of C' is not a NOT gate. Let ¢1,...,g9: be a list of NOT gates of C' arranged
in the topological ordering and ¢,41 be the output gate of the entire circuit C. For
0<i<tandu= (u1,-...,u;) € {0,1}%, let C,, denote the subcircuit of C' obtained
by fixing the output of the NOT gates g; to constant u; for 1 < j < ¢ and making the
input to g;11 in C the output of the circuit C,. In particular, for the empty sequence
A, C) denotes the circuit obtained by making the input to g; in C' the output of entire
circuit C).

Clearly, for any u of length at most ¢, the function computed by the circuit C,
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is monotone, and the size of the circuit C,, is not greater than the size of the circuit
C. Then it is easy to see that, for any (w,w’) € {0,1}" x {0,1}"™ separated by the
circuit C, there exists 0 < i < ¢t and u € {0,1}¢ such that the circuit C,, separates
the (w,w’). This is because as such an i we can simply take i such that g;; is
the first gate in the sequence (g1, ..., gi+1) such that Cy, ., (w) # Cy, ., (w'), and put
uj = gj(w)(= gj(w')) for 1 < j < 4. The number of the circuits represented as
Cy for u € {0,1}* such that |u| < ¢ is given by Z;ZO 2/ = 2t*1 — 1 = a. Hence,
denoting by f;’s functions computed by circuit C,’s, we have Uf’EF’ G(f") D G(f)
for F' = {f1,..., fa}. Thus, since size,(f)(= size(C)) > sizemon(f') for any f' € F’,
the proof is completed. O

4. Hardness of Approximating Clique Function. The clique function, de-
noted CLIQUE(m, s), of m(m — 1)/2 variables is defined to take the value 1 if and
only if the undirected graph on m vertices represented in the obvious way by the input
contains a clique of size s. For a positive integer sz, a graph on m vertices is called
good if it consists of a clique on some set of s» vertices, and contains no other edges.
Let I(m, s2) denote the set of such good graphs. For a positive integer s1, a graph
on m vertices is called bad if there is a partition of the vertices into m mod (s; — 1)
sets of size [m/(s; —1)] and s; — 1 — (m mod (s; —1)) sets of size [m/(s; — 1)] such
that any two vertices chosen from different sets have an edge between them, and no
other edges exist. Let O(m, s1) denote the set of such bad graphs.

For 1 < s1 < s2 <'m, let F(m, s1, s2) denote the set of all the monotone functions
f of (') variables representing a graph G on m vertices such that the function f
outputs 0 if G contains no clique of size s;, outputs 1 if G contains a clique of
size s9, and outputs an arbitrary value otherwise. We remark that F(m,s,s) =
{CLIQUE(m, s)} and that if s; < s2 then F(m,s1,s2) consists of more than one
function. For any function f in F(m, s1, s2), the value of f is 1 for any good graph,
and is 0 for any bad graph. Moreover a good graph is minimal in the sense that
removing any edge from the graph destroys the clique of size s3. On the other hand,
a bad graph is maximal in the sense that adding any edge to the graph makes the
graph contain a clique of size s;.

In this section, we prove the following theorem, which will be needed in the next
section to prove the main theorem. This theorem says that, if 64 < s; < sy and
51/332 < m/200, then no function in F(m, sy, ss) can be approximated by a feasible
monotone circuit.

THEOREM 4.1. Let s1 and s2 be positive integers such that 64 < s; < s2 and
31/332 < m/200. Suppose that C is a monotone circuit and that the fraction of good
graphs in I(m, s2) such that C outputs 1 is at least h = h(s2). Then at least one of
the following holds:



(i) The number of gates in C is at least (h/2)251/3/4,
(i5) The fraction of bad graphs in O(m, s1) such that C outputs 0 is at most 2/3}/3.
a
Let Prycr(m,s,)[E(v)] denote the probability of event F(v) provided that the uni-
form distribution over I(m, s2) is assumed, and similarly for Pryco(m,s,)[£(u)]. Theo-
rem 4.1 is restated as follows: Assume that the conditions on the parameters described

in the theorem are satisfied. If monotone circuit C is such that

Pr  [C(v) =1] > h,

vel(m,sz)
and
Pr  [C(u) =0] > 1i/3
u€O(m,s1) 51
then

size(C) > (g) 951%/1.

The proof of Theorem 4.1 is done employing the symmetric version of the method
of approximation [2, 5, 8,9, 13]. In particular, we use arguments similar to the proof of
an exponential lower bound on the monotone circuit complexity of the clique function
(Theorem 3.1 in [2]). The key to the proof is to define the approximate operations V
(which approximates an OR gate) and A (which approximates an AND gate) in terms
of DNF and CNF formulas such that the size of terms and clauses in the formulas
is limited appropriately. For the purpose of the arguments of the current paper, we
adopt the same definition for the approximate operations as in [2] except for the values
of the parameters [ and r in their definitions, and follow their arguments to obtain
Theorem 4.1.

In what follows we present a rough sketch of a proof of Theorem 4.1. As in [2], a
monotone circuit is assumed to be converted to satisfy the following conditions: Any
input of an OR gate (respectively, an AND gate) is connected to either an output of
AND gate (respectively, an OR gate) or an input node; and the output gate of the
circuit is an AND gate. It is easy to see that in order to convert a monotone circuit
to satisfy these conditions, we need to at most double the size of the circuit.

A DNF formula is a disjunction of conjunctions of input variables and each con-
junction of a DNF formula is called a term. A CNF formula is a conjunction of
disjunctions of input variables and each disjunction of a CNF formula is called a
clause. Let t be a term or a clause. The endpoint set of t is a set of all endpoints of
the edges corresponding to variables in ¢. The size of ¢ is defined to be the cardinality
of the endpoint set of . The approximate operations V and A are defined as follows:
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Let fP and fP be two functions, represented by monotone DNF formulas,
feeding into an V gate. f{° V fP is the CNF formula obtained by transforming
the monotone DNF formula f v f£ into the monotone CNF formula and

then taking away all the clauses whose size exceeds r.

>

Let f& and f{ be two functions, represented by monotone CNF formulas,
feeding into an A gate. fC A f5 is the DNF formula obtained by transforming
the monotone CNF formula f& A f§ into the monotone DNF formula and
then taking away all the terms whose size exceeds .

In what follows, AND and OR gates are also written as A and V gates, respec-
tively. Given a monotone circuit C, the circuit obtained by replacing all V and A
gates in C' by V and A gates, respectively, is denoted by C, which will be called
the approximator circuit corresponding to C'. The approximate operations and the
approximator circuits are introduced to derive good lower bounds on the size of cir-
cuits computing a certain function. Theorem 4.1 derives a lower bound on the size of
monotone circuits approximately computing the clique function. Its proof, based on
the approximation method, is as follows. First, we show that the number of good and
bad graphs that are classified incorrectly by an approximator circuit is large (Lemma
4.3). More precisely, for an approximator circuit C' arbitrarily given, C' outputs 0 for
a large number of good graphs or yields 1 for a large number of bad graphs. Second,
we show that the number of good and bad graphs for which a usual gate and the cor-
responding approximate gate behave differently is small. More precisely, it is only for
a small number of bad graphs that V gate outputs 0 and V gate yields 1 (Lemma 4.4),
whereas it is only for a small number of good graphs that A gate outputs 1 and A gate
yields 0 (Lemma 4.5). Recall that, in general, the usual gates and the corresponding
approximate gates behave differently because long clauses or long terms are taken
away when defining the approximate operations based on the formulas. Finally, since
for each good or bad graph classified wrongly by an approximator circuit there exist
an approximate gate in C that behaves differently from the corresponding usual gate
on that graph, the number of approximate gates that compensate for a large number
of good or bad graphs misclassified by the entire circuit must be large (Theorem 4.1).

Choose | = Ls}/3/4j and r = L303}/3J. Put w = m mod (s; — 1). A simple
calculation shows the following.

FacT 4.2. |I(m, s2)| = (m!)/(s2!(m — s2)!) and

m!

00l = oo = D™ ([ 1 = DI k(s — 1= )l

We proceed to the technical parts of the proof. Although the arguments are anal-

ogous to that presented in [2], we give proofs here to make this paper self-contained.
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LEMMA 4.3. Let C be a monotone circuit. An approzimator circuit C outputs
identically 0 or the fraction of bad graphs in O(m, s1) such that C outputs 1 is at least
1- sl_l/ ,

Proof. Let f be the output of an approximator circuit C. Because of the as-
sumption that the output gate of the approximator circuit is an AND gate, f can be
represented by a monotone DNF formula consisting of terms of size at most 1. If f
is identically 0 then the first conclusion holds. If not, then there is a term ¢ whose
size is at most [ such that f > ¢ holds. In what follows, bad graphs are represented
as one to one mapping from the vertex set to {(1,1),...,(1,[m/(s1 — 1)]),...,(s1 —
1,1),...,(s1 — 1,|m/(s1 — 1)])}, so there are many mappings corresponding to one
bad graph. Such a mapping specifies a bad graph in the obvious way: Two vertices in
the graph have an edge between them if and only if the mapping assigns pairs to the
vertices with different first components. The function in question will be estimated
in terms of the ratio of the corresponding mappings. It is easy to see that the ratio of
mappings that satisfy the condition that there is a variable x in the term ¢ such that
the two vertices incident to = are assigned a pair with the same first component, i.e.,

the term ¢ outputs 0 on the bad graphs specified by such mappings, is at most

W=D [m/(sa -] _ "2 _ s
2 m 32 5 !

This completes the proof. O

LEMMA 4.4. Suppose V gate and V gate are given as inputs the same monotone
formulas such that the size of any term in the formulas is at most l. The number of
bad graphs in O(m,sy) for which the OR and V gates produce different outputs (the
OR gate produces 0, whereas the V gate produces 1) is at most

(m/s*)+ (m —r = 1)!

(fm/(s1 = D))= (Im/(s1 — D=1 wwl(sy — 1 —w)l’

where w = m mod (s; — 1).

(4.1)

Proof. Let fP and f£ denote monotone formulas, such that the size of any term
in the formulas is at most I. Let f Vv f£ and fP V fP be denoted by f” and f¢,
respectively. Let ¢1,...,t; be the complete list of the terms in fP. We shall count
the number of bad graphs u such that both f”(u) = 0 and f¢(u) = 1 hold. As in
the proof of Lemma 4.3, bad graphs are represented as the mappings described there.
Since each bad graph in O(m, s1) is represented exactly as ([m/(s1 —1)])¥(|m/(s1 —
1)])s1=1=wy!(s; — 1 —w)! mappings as in the proof of Lemma 4.3, it suffices to show
that the number of mappings corresponding to the bad graphs described in the lemma
is at most (m/s}/ﬁ)’““(m —r — 1)I. In order to count such mappings we will count
the number of ways of choosing one or two vertices in a certain manner repeatedly
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from the variables in ti,...,t; so that the corresponding bad graph wu satisfies the
conditions fP(u) =0 and f¢(u) = 1.

Suppose that we somehow already assigned distinct pairs of integers to endpoints
of variables from terms ¢1,...,¢; 1 so as to make all these terms take the value 0 and
that we proceed to the term ¢;. We now typically choose one or two vertices from the
endpoints of variables from ¢; in the way described below and then proceed to the
next term ¢;41.

We first consider two extreme cases. If there is a variable in t; already assigned
0 by the partial assignment, we skip to the next term ¢;;1. The other extreme case
occurs when all the variables in ¢; are, so far, assigned 1. In this case the term ¢; will
never take value 0, hence we do not need to consider the case.

If neither of these extreme cases happens, choose a variable from the term ¢; such
that at least one of the vertices associated with the variable is not assigned a pair
of integers. There are two cases to consider: If exactly one of the vertices has been
assigned, then assign a pair to the remaining vertex whose first component is identical
to the first component of the pair of integers associated with the variable so that the
variable takes the value 0. In this case, there are at most [m/(s; —1)| < m/(s; — 1)
ways of assigning the pairs of integers to the vertex. On the other hand, if both of the
vertices have not been chosen, assign to these vertices pairs of integers with their first
components being the same so that the variable associated with two vertices takes the
value 0. So, for the two vertices, there are at most (s; — 1)([m/(s1 — 1)])([m/(s1 —
1)] — 1) < 2m?(s; — 1) ways of assigning the pairs of integers.

Let k£ be the number of variables in term ¢; such that exactly one of the vertices
corresponding to the variables is assigned a pair of integers so far. Then there exist
at most [(I — 1)/2 — k variables in term ¢; such that none of the vertices associated
with the variables has been assigned a pair of integers so far. So the number of ways
of choosing an unassigned vertex in the endpoints of variables in ¢; and assigning a

pair of integers to the chosen vertex is at most

max_ {k(m/(s1 — 1)) + /0~ D)/2~ B)@m?/(s1 - D)}

0<k<I(l1—1)/2

(4.2) < (U= 1)/2)(m/ (51 — 1)) + /AT = 1)/2)2m?/(s1 = 1))-

This is because doing something to two vertices in ¢ ways can be regarded as doing
something to a vertex appropriately in /i ways twice successively. Recall that [ =
31/3/4J. We have

Bq(g) < 2m s am m o m o m
%2 S 55 51 32 s 3281/3 231/6 51/6-

By the definition of V gate, a bad graph u corresponding to a mapping specified
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in this way satisfies f”(u) = 0 and f¢(u) = 1 only if there exist more than r vertices
assigned to pairs of integers in the above procedure. Thus the number of mappings
corresponding to such bad graphs is at most the number of the ways of assigning the
r 4+ 1 vertices to the pairs of integers in the manner described above multiplied by
the number of ways of assigning the remaining m — r — 1 vertices arbitrarily to the
remaining distinct pairs of integers, which is given by (m/s}/ﬁ)’““(m —r —1)!. This
completes the proof. O

LeEMMA 4.5. The number of good graphs in I(m,ss) for which the AND and A
gates produce different outputs (the AND gate produces 1, whereas the A gate produces

0) is at most

(2rsy) L (m —1—1)!
sol(m — s2)!

Proof. The proof is similar to that of Lemma 4.4. Suppose an AND gate and an
A gate are given as input for the same monotone CNF formulas, denoted f& and f.
Let f€ = fC A S and fP = f€ A fY. Let ¢1,...,c, be the complete list of clauses
in fc. Note that, for each clause ¢;, the size of ¢; is at most r and so the clause ¢;
contains at most r(r — 1) /2 variables. The number in question is equal to the number
of good graphs v such that f©(v) =1 and fP(v) = 0.

Instead of the mappings from vertices to pairs of integers in the case of Lemma 4.4,
we consider one to one mappings from the vertex set to the set of integers {1,...,m}.
Such a mapping is thought to specify a good graph such that the set of vertices
assigned with integers from 1 to so forms a clique. Since each good graph in I(m, s2)
is represented as exactly s2!(m — s2)! mappings, it suffices to show that the number
of mappings corresponding to good graphs v such that f¢(v) = 1 and f”(v) =0 is
at most (2rss) 1t (m —1— 1)\

As in the proof of Lemma 4.4 we proceed from ¢; up to ¢, repeatedly by assigning
one or two vertices to integers from {1,...,m} so that the resulting good graph
v satisfies the condition that f©(v) = 1 and f”(v) = 0. Suppose that we somehow
already assigned distinct integers to the endpoints of variables from clauses ¢y, ..., ¢; 1
so as to make all these clauses take the value 1 and we proceed to clauses ¢;. We now
choose one or two vertices from the endpoints of variables from ¢; in a way similar
to that in the proof of Lemma 4.4 and then proceed to the next clause ¢;11. As
in the case of the proof of Lemma 4.4, we only need to consider the case where
there remain variables in ¢; such that assigning one or two endpoints, not chosen
so far, of these variables makes the clause ¢; take the value 1. Since the number of
endpoints of vertices in ¢; is at most r, the number of ways of choosing a vertex and
assigning an integer in the manner described above is at most r(s2 — 1), while the
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number of the ways of choosing two adjacent vertices and assigning integers is at most

(r(r —1)/2)s2(s2 — 1). Thus the number of the ways per a vertex is at most

r(sg — 1) 4+ /(r(r — 1)/2)ss(ss — 1) < 2rs,.

Thus, in a way similar to the proof of Lemma 4.4, it is easily seen that the number of
mappings corresponding to good graphs v such that f¢(v) = 1 and f”(v) =0 is at
most (2rsy)! T (m —1 —1)! because clauses of length more than [ are taken away when
CNF formula f& A f$ is transformed into DNF formulas fCAfS. This completes the
proof of the lemma. 0

Proof of Theorem 4.1. Assume that a monotone circuit C' is such that
Pryc1(m.en)[C(0) = 1] > h(s2) and Prueo(m.)[C(u) = 0] > 2/s;/°
the theorem, it suffices to show size(C') > (h/2)251/3/4. From Lemma 4.3, the approx-
imator circuit C satisfies Pryes(m,s,)[C(v) # C(v)] > h(s2) or Prycom,s)[C(u) #
C(u)] > 1/31/3. Thus, in view of Fact 4.2, Lemmas 4.3, 4.4 and 4.5, the size of C is

at least

(4.3) lmin ( fi(s2)m! n m! > .

2 (2rsz)t(m —1—-1)!" s}/g(m/sl/ﬁ)r*‘l(m—r— 1)!

hold. To prove

The coefficient 1/2 here is needed to take into account the fact that circuit C is
assumed to be modified so the AND and OR gates alternate along any path from an

input to the output in the circuit. An elementary calculation completes the proof. O

5. Proof of the Main Theorem. The goal of this section is to prove Theorem
5.1, which says that [(1/6) loglogm| NOT gates are not enough to compute the clique
function feasibly. We do not intend here to optimize the constant 1/6 in the number
of NOT gates.

THEOREM 5.1. For any sufficiently large integer m,

1/2

Size[(l/ﬁ) loglog m | (CLIQUE(TH, (lOg m)3(10g m)l/z)) > 2(1/5)(10g m)(lOEM)

Before proceeding to the proof, we describe the idea behind the proof.

Let f be CLIQUE(m, s). Suppose to the contrary that a small circuit C' with ¢
NOT gates computes f. By Theorem 3.2, there are 2!T! — 1(= ) monotone functions
fi,-.., fa such that each of them can be computed by a monotone circuit and that
Uie{1,...a}G(fi) 2 G(f).

All proofs of lower bounds on the size of a monotone circuit computing a certain
function are based on the observation that the circuit separates the minterms and
maxterms of the target function [2, 5, 8, 9, 10, 13] (See Fig. 5.1). Instead of focusing
on the separation of the minterms and maxterms of the target function f, we consider

11



Fic. 5.1. A figure showing the minterms and mazterms of CLIQUE in the Boolean cube.

Fic. 5.2. Layered Structure of the good and bad graphs: The good graphs and bad graphs are
described as solid circles and open circles, respectively. A small monotone circuit cannot separate
its good graphs and bad graphs in any one layer. When a bad graph u in the i-th layer is connected
by an arrow to a good graph v in the (i + 1)-th layer, they satisfy the condition v > w.

separating pairs of vectors (w,w’) in G(f), that is, pairs (w,w') such that f(w) =0,
fw') =1 and Ham(w,w') = 1. Theorem 3.2 says that, if f can be computed by
a small circuit C' with ¢ NOT gates, then it follows that there exists a collection of
monotone functions fi, ..., fo such that they separate G(f) (i.e., Uicf1,.... a3 G(fi) 2
G(f)) and that each of functions fi,..., fo can be computed by a small monotone
circuit, where a = 27! — 1. In what follows we shall show that the circuit C is not

small by showing that it is not the case that all of the function f;’s satisfying the
12



above condition can be computed by small monotone circuits. In fact we only pay
attention to a subset of G(f) which contains pairs that seem to be hard to separate.
As the following example shows, it is crucial to decide which subset of G(f) we pay
attention to. As an example of a bad choice for a subset, take the subset G'(f) defined

as :

G'(f) = {(u,u") |u € O(m, s) and (u,u”) € G(f)}
U{(v",v) |v € I(m,s) and (v ,v) € G(f)}.

Clearly the number of 1’s in u is the same for all v € O(m,s), and similarly for
v € I(m, s). So if we set f; and fo to be the two threshold functions whose threshold
values are the number of 1’s in v and that in u™, then we have G(f1)UG(f2) 2 G'(f).
On the other hand, it is known that a monotone circuit of size O(nlogn) can compute
a threshold function on n variables for any given threshold value. So we cannot derive
a contradiction by the usual approximation method argument. We will give a subset
which we use as the subset of G(f) consisting of edges illustrated in Fig. 5.2.

Let Ip < I3 < --- < lq be a monotone increasing sequence of integers, where
lp = s, lo = m, and others are chosen appropriately later. For 1 <1 < «, a graph
v is called good in the i-th layer if v consists of a clique of size [;_1, and contains no
other edges. For 1 < ¢ < «, a graph w is called bad in the i-th layer if there exist [;
vertices and a partition of these [; vertices into s — 1 blocks with nearly equal size
such that v has an edge between any two vertices chosen from different blocks and no
other edges. In other words, a bad graph in the i-th layer is a (s — 1)-partite complete
graph on some subset of vertices of size [;. Note that, for any good graph v in the first
layer, there is an edge in G(f) whose head is v because deleting an edge from v breaks
the clique in v. (Recall that each vertex of the boundary graph G(f) corresponds to
an input graph of the clique function.) Similarly, for any bad graph w in any layer,
there is an edge in G(f) whose tail is u because adding an appropriate edge (between
vertices in a block) to u ends up with having a clique of size s. In what follows we
will prove that if monotone functions fi,..., fo separate G(f) and each fi,..., fo
can be computed by a small monotone circuit, then a contradiction follows. In order
to prove it, because we must consider a functions which are supposed to separate
G(f), we must fully exploit the computational complexity of the function CLIQUE,
considering « layers and focusing on the separation between good and bad graphs in
each layer.

Since Uieqa,.... a1 G(fi) 2 G(f), there exists a function, say fi, in {f1,..., fo} such
that G(f1) contains at least 1/« fraction of edges of G(f) ending at good graphs in
the first layer, and hence f; outputs 1 on at least 1/a fraction of good graphs in
the first layer. Since we can use Theorem 4.1 to show that every small monotone

13



circuit that outputs 1 for a certain fraction of good graphs in the first layer must
output 1 for a large number of bad graphs in the same layer, the function f; takes
the value 1 for a large number of bad graphs u in the first layer. By adding an edge
appropriately to such a u we get a graph u™ which contains a clique of size s. Hence
there are many edges, denoted (u,u™), which are not included in the edges in G(f1).
Since Ujeqi,...,a}G(fi) 2 G(f), there exists a function, say fa, in {fs,..., fo} such
that G(f2) contains at least 1/a fraction of such edges (u,u™). On the other hand,
because f> is monotone and fo(u™) = 1, f takes the value 1 on the good graph v
in the second layer such that uT < v. Applying Theorem 4.1 again, we can conclude
that f> outputs 1 for a large number of bad graphs in the second layer. It can be

shown that f; also outputs 1 for such bad graphs.

By continuing the above argument, we can conclude that every function fi,...,
fa outputs 1 on some bad graph u in the last layer, contradicting the fact that
Uie{1,....a}G(fi) 2 G(f). This is the outline of the proof.

Proof of Theorem 5.1. Let m be a sufficiently large integer. Put ¢ = |(1/6) loglogm|,
s = (logm)3Ues m)'/% = 2(1/5)(log mtsmd = 2 1. We suppose to the
contrary that a circuit C' with at most t NOT gates computes CLIQUE(m, s) and that
size(C') < M. From Theorem 3.2, there are monotone functions fi,..., fo € M™ such
that sizemon(fi) < M for any 1 <i < a, and U;eqy, oy G(fi) 2 G(CLIQUE(m, 5)).

Letlop = 5,1, =mand forevery j = 1,...,a—1,let [; = m!/10+(1/3)(7=1)/(log m)t/e
Since I, ; < m1/10+(1/3)(2(1/ﬁ) teglog m+ly /(log m)1/6  _ ml/10+2/3 m9/10, we have
lp <ly < -+ <ly. Let V be the set of m vertices of the graph associated with
CLIQUE. For j € {0,...,a}, let £; denote {L CV | |L| =;} and let £;(L) denote
{L'CL|L €L;}. Forie{l,...,a} and L; € L;, a graph v is called good on the
set L; in the i-th layer if it consists a clique of size [;_; on some L; 1 € L£;_1(L;) (i.e.,
|L;—1| =1l;—1 and L,_y; C L;), and contains no other edges. For i € {1,...,a} and
L; € L;, a graph u is called bad on the set L; in the i-th layer if there is a partition
of L; into Vi,...,Vs_1 such that

() [Vil € {LILal/ s — D) [1Lal/(s = DT} fori=1,...,5— 1,

(ii) w has an edge (w,w') if and only if w € V; and w' € V; such that i # j, i.e.,

u is a complete (s — 1)-partite complete graph on the vertex set L;.
Let Iy, (respectively, Oy,,) denote the set of all good (respectively, bad) graphs on the
set L; in the i-th layer. Note that a good graph in the first layer (respectively, a bad
graph in the last layer) is a minterm (respectively, a maxterm) of CLIQUE(m, s). We
also note that there is a one to one correspondence between Iy, and I(l;,l;—1), and
between Or,, and O(l;, s), where I(l;,1;—1) and O(l;, s) are defined in Section 4. Hence
a function in F'(l;,s,l;—1) can be viewed as separating the graphs into two groups,
Ir, and Op,. Since sY30,, < [;/200 holds, the following corollary is straightforward
14



from Theorem 4.1. This corollary says that a small monotone circuit cannot separate
Oy, and Iy, for any ¢ and for any vertex set L; € L;.

COROLLARY 5.2. Leti € {1,...,a} and L; € L;. Suppose that C' is a monotone
circuit and the fraction of good graphs in I, (i.e., the set of good graphs on L; in
the i-th layer) such that C outputs 1 is at least h. Then at least one of the followings
holds:

(i) The number of gates in C is at least (h/2)251/3/4,

(i) The fraction of bad graphs in Oy, (i.e., the set of bad graphs on L; in the i-th

layer) such that C' outputs 0 is at most 2/s'/3. 00

Proof of Theorem 5.1 (continued). For L C V, let vy, denote a graph corre-
sponding to a clique on the set L and having no other edges. Recall that £y =
{L CV | |L| = s}. Thus for any Ly € Lo, there exists u < wvp, such that the
edge (u,vr,) is in G(CLIQUE(m, s)). Hence there exists i; in {1,...,a} such that
Prryeco[qu <wvr, (u,vr,) € G(fi,)] > 1/a > 1/2+1 holds, and this implies

1
(51) LUPGI;lo[fil (ULO) = 1] > ot+1
Then we can obtain
1 1
. ; = > > .
2 P, B 0 =112 5] 2

This is because from Eq. (5.1), we have

5 et =125 (0) 11
X

Liely

1 (m
(5.3) Sp <11

But if Eq. (5.2) does not hold then

> Hveln | fiw) =1} < (ZL>2t—1+2<§;> N <ZL> (1_2t_1+2> <§;>2t_1+2

LieLy
< 2 m l1 o 1 m ll
2042\ [y J\lp) 2+ \Uy ) \lo/’
contradicting Eq. (5.3).

Now we call L € Ly denseif Procr, [fi, (v) =1] > 1/2t+2 holds. Put h = 1/2!+2.
An easy calculation shows h > 1/m. Thus by applying Claim 5.2 to every dense
L1, we have sizemon(fi,) > (1/2m)2°'*/4 = 9(1/1)(10gm) =™ Clogm-1 5 1r o
Pryco,, [fi,(u) = 1] > 1—2/s'/3 > 1/2 for any dense L,. Since the former contradicts
the assumption that size,on(fi;) < M, we have Pruco,, [fi,(u) = 1] > 1/2 for any
dense L. By Eq. (5.2), we have

1 1
. ; = > —| > .
(59 B LB, U =112 5] > 5
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The proof will be by induction on a level of the layers. We use Eq. (5.4) as the
basis of the induction, and the induction steps are as follows.

CrAM 5.3. Suppose c; > 1 and cy > 1. Putcs = «. Let fi1,..., fe, be the mono-
tone functions such that Uicq1, . 3G (fi) 2 G(CLIQUE(m, s)) and sizemon(fi) < M
for any 1 <i < c3. Suppose that, for distinct indices i1, ...,ir € {1,...,c3},

o | ) == ) =112 1/ 2 1/e

holds. If cicacs < 31/3/8, then there exists ipy1 € {1,...,c3}\{i1,-..,ir} such that

Pr [ Pr [fu(u)::ka(u):f2k+1(u):1] > ! ] > !

Lyt1€Lkyr |u€0L, T dcieocs | T 20203'

For a proof of this claim, see the appendix.
Proof of Theorem 5.1 (continued). First we claim that for any k € {1,...,a},

there are k distinct indices 41,...,4 € {1,...,a} such that
5.5 P P ; = =f; =1] > L > !
Ga)l, [, V) = = Pl =112 sy | 2 Gie

holds. The claim is proved by induction on k. The basis, k = 1, is trivial from Eq.
(5.4). Now we suppose the claim holds for any ¥ < [ and let £ = [ + 1. By the

induction hypothesis, we have

1 1
LB 1) = = ) = 12 g | 2
Putting ¢ = 200+ ¢, = 20D and ¢ = a, we have 4deieacs <
92+ (t42)+1(t+2)+(t41) < 2(l+1)2(t+2)’ 2eyc5 < QLHI(t+2)+t+1 — 9(I+1)(t+2) 41 creacs <
2+ (42 1g < 2 g < Mg < 2P g o gyleem g
< (logm)V'e8™ /8 = s1/3 /8. Thus by Claim 5.3,
Pr Pr [fi,(u)=--= fi,.(u)=1] > L > 1
Liti€liyr |u€Or, " N s o T dcieacz | T 2eac3
holds. Therefore
Pr Pro [fo(w)=- = fon (u)=1] >~ > 1
Liy1€Liyy |u€OL, " N B - = 2(+1)2(t+2) | = 2coc3

> g
This completes the induction step and hence the proof of the claim.

Recalling £, = {V} and setting k in Eq. (5.5) to a, we have Pr,co,[Vi €
{1,...,a} fi(u) = 1] > 0. Thus there exist u € Oy and u™ € CLIQUE(m, s)~!(1)
such that (u,u") € G(CLIQUE(m,s)) and (u,u’) & G(f;) for any i € {1,...,a}.
This implies that ;g1 oy G(fi) 2 G(CLIQUE(m, s)), completing the proof. 0
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6. Concluding Remarks. There are still many interesting questions yet to be
answered in the line of research pursued in the present paper. An obvious challenge is
to improve the number of negation gates in the main theorem to w(loglogn). Another
interesting problem is to show a tradeoff between the circuit size and the number of
negation gates in a circuit to compute a certain monotone function. Analyzing the size
complexity more carefully along the line suggested in this paper might help to explore
such a tradeoff. Note that we have recently proved that such a tradeoff exists for
the merging function MERGE(n, n), which is a collection of monotone functions that
merges two presorted binary sequence each of length n into a sorted sequence of length
2n, by showing size;(MERGE(n,n)) = ©(nlogn/2*) for every t = 0,...,loglogn [3].

Finally, it should be noted that there is a large obstacle in generalizing our tech-
niques to obtain a good lower bound for a circuit without restricting the number
of negation gates. This comes from the notion of “Natural Proofs” introduced by
Razborov and Rudich [12]. They proved that almost all known combinatorial lower
bound proof techniques are “natural”, and such proofs cannot yield a good lower
bound for general circuit complexity under some commonly believed cryptographic
assumption. Our techniques seem to fall under the category of Natural Proofs al-
though we have not tried to give a formal proof. Some radically different techniques
would be needed to improve the number of negation gates in our main theorem to,

say, logn.
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Appendix. Proof of Claim 5.3. Let £5*? denote the collection of sets Ly € Ly

with Pruco,, [fi, (u) =+ = fi,(u) = 1] > 1/c1. By the assumption of Claim 5.3, we
have
(A1) Pr [Ly € £3*] > Ly
Lx€Lk C2
Let u € O, be such that f;, (u) = --- = fi;, (u) = 1. By the definition of boundary

graphs, none of G(fi),...,G(fi,) contains an edge from u. Note that
CLIQUE(m, s)(u) = 0. Let u* be a graph obtained from u by adding an arbitrary
edge whose both endpoints are in Ly. Clearly, Ham(u,u") = 1, CLIQUE(m, s)(u™) =
1 and (u,u™) € G(CLIQUE(m, s)). Since u* < vr,, we have

VL € £2%Fu € Op, Fut <wvp, (u,ut) € U G(f;).
J€{L,.ies\{i1,. ik}
Therefore there exists [ € {1,...,¢c3}\{i1,...,ix} such that

1
Pr [FueOp,ut <vp, (u,ut)eG(fi)]>—
Lyeched c3
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holds. If (u,u%) € G(fi) for u € Op,, then fi(ut) = 1, which together with
ut < wg, implies fi(vr,) = 1 by the monotonicity of f;. Thus we can conclude
that Prp,ec, [fi(vr,) = 1| Ly € £5%Y] > 1/cs. From this and Eq. (A.1), there exists
le{l,...;cs}/{i1,...,ir} such that

1
bad —
(A.2) L (D £t and filor,) = 1) 2 .

Now we choose an index [ arbitrarily that satisfies the above inequality and let i1 =
I. Letting £;""*" denote a collection of sets Ly € L such that Ly € £5* and
finss(r,) = 1, we have Pry, er, [Li € £;79"] > 1/(coe3). By a similar arguments

to the derivation of Eq. (5.2), we have

1 1
A3 Pr Pr Ly € Lteraet) > > .
(A4-3) Li41€Lx41 Lkeﬁk(LHl)[ ‘ S 2cac3| T 2cac3
Now we call a Ly € L4 dense if

1
A4 PI' L € £target >
( ) Lke»ck(LkJrl)[ b k ] ~ 2cac3

holds, and let £{¢"*® denote a collection of all dense sets in Lj11. Note that

ve}zi“[fml(v) =1] > 1/(2cacs)
for any dense Lpi1 € Ezi"fe. Put h = 1/(2c2¢c3) > 1/m. Thus by applying
Claim 5.2 to every dense Lyii, we have sizepon(fiy,,) > (1/2m)231/3/4 > M or
Prucop,,, [fiz.(w) = 0] < 2/s'/3 < 1/(4cicacs) for any dense Liyq. (We use the
assumption cjcacs3 < s'/3/8 in Claim 5.3 here.) Since the former contradicts the

assumption sizemon (fi,,,) < M, we have

A. Pr[f; =0] < :
(A.5) B V@) =0 <

dense

for any Liy1 € £357%7°¢. By Eq. (A.4), for any dense L1, we have

1 1
A6 P P 5 =--=f; =1]>—> .
(a6, Pro | P (f ful =12 | 2 5o
From the above inequality, we can get
AT P i = =fi(u)=1]> .
(A.7) uEOerH[fl(U) fir(w) =1] > Sereats

To derive this, we consider the bipartite graph G = (Uy,Us, E) with vertex sets

Ui =Op,,, and Us = UL, e (L44,)OL, and the edge set

E = {(Ul,UQ) e U x Uy |’LL1 > Ug}.
18



Let U"e"™* be the set of us € Us such that fi (u2) = --+ = fi, (u2) = 1 and let
N(Urerk) C Uy be the set of vertices adjacent to vertices in U"*"*. By the mono-
tonicity of f;’s, for every u; € N(UM*™*), f; (u1) = -+ = fi, (u1) = 1 holds. From
Eq. (A.6), we have |U3""*| > |Us|/(2¢1cac3). Clearly every vertex in U; has the same
degree, and similarly for Uy. Hence we can prove that |N (U"e"™%)| > |Uy|/(2¢1c2c3),
which implies Eq. (A.7).

By Egs. (A.5) and (A.7), we have

1 1 1
UEOer+1 [f ! (U) f b (U) ] — 2cicac3 4cieocs 4cieocs

for any Li41 € E‘,ﬁj_"l“. Claim 5.3 is straightforward from this and Eq. (A.3). O
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