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Abstract
We show that every polynomial threshold function that sign-represents the

ODD-MAXBIT𝑛 function has total absolute weight 2Ω(𝑛1/3 ) . The bound is tight up
to a logarithmic factor in the exponent.

1 Introduction and Results
In this note, we investigate the polynomial threshold representation of Boolean functions.
This representation has been extensively studied in areas such as complexity theory and
learning theory (see e.g., [1, 3, 4, 5]).

We say that a multivariate polynomial 𝑝 : {0, 1}𝑛 → Zwith integer coefficients sign-
represents a Boolean function 𝑓 : {0, 1}𝑛 → {−1, 1} if, for every 𝒙 = (𝑥1, . . . , 𝑥𝑛) ∈
{0, 1}𝑛, 𝑓 (𝒙) = sign(𝑝(𝒙)), i.e.,

𝑓 (𝑥1, . . . , 𝑥𝑛) = 1 ⇒ 𝑝(𝑥1, . . . , 𝑥𝑛) ≥ 1,
𝑓 (𝑥1, . . . , 𝑥𝑛) = −1 ⇒ 𝑝(𝑥1, . . . , 𝑥𝑛) ≤ −1.

We also say that such a polynomial is a PTF (polynomial threshold function) for 𝑓 .
Since 𝑥2 = 𝑥 for 𝑥 ∈ {0, 1}, we only need to consider a multilinear polynomial. The

degree of a polynomial 𝑝 is the maximum number of variables appearing in any term in
𝑝.

For a polynomial 𝑝, the weight of 𝑝, denoted by 𝑊 (𝑝), is defined as the sum of
absolute coefficients in 𝑝. For a Boolean function 𝑓 , the PTF weight of 𝑓 is defined as
the smallest 𝑊 (𝑝) over all PTFs 𝑝 for 𝑓 .
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Definition 1 The ODD-MAXBIT𝑛 function is an 𝑛-variable Boolean function that takes
(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 as an input and outputs (−1)𝑖−1 if 𝑖 is the largest index 𝑖 ∈
{1, . . . , 𝑛} such that 𝑥𝑖 = 1. If an input is 0𝑛, then it outputs −1. In other words,
ODD-MAXBIT𝑛 outputs 1 iff the rightmost bit of an input that is set to 1 is in an odd bit
position. □

Note that ODD-MAXBIT𝑛 can be represented by a decision list of length 𝑛. The aim
of this note is to show the following lower bound on the PTF weight of ODD-MAXBIT𝑛.

Theorem 1 The PTF weight of ODD-MAXBIT𝑛 is 2Ω(𝑛1/3) .

Note that a PTF is usually considered over the domain {0, 1}𝑛 or {−1, 1}𝑛 and that
our result is valid only for a PTF over {0, 1}𝑛.

By the following upper bound by Podolskii and Proskurin [6] (which improves a
slightly larger bound by Kilivan and Servedio [3]), our lower bound is tight up to a
logarithmic factor in the exponent.

Theorem 2 (Podolskii and Proskurin [6]) Let 𝑓 be a Boolean function that can be
represented by a decision list of length 𝑛. Then 𝑓 can be represented by a PTF of degree
𝑂 (𝑛1/3) and weight 2𝑂 (𝑛1/3 log 𝑛) .

Prior to this work, an exponential lower bound on the PTF weight of ODD-MAXBIT𝑛

has been known only for degree-𝑑 polynomial. Beigel [2] showed that every degree-𝑑
PTF for ODD-MAXBIT𝑛 has weight 2Ω(𝑛/𝑑2) , and Servedio, Tan and Thaler [5] showed
that every degree-𝑑 PTF for ODD-MAXBIT𝑛 has weight 2Ω(

√
𝑛/𝑑) .

2 Proof of Theorem 1
The proof of Theorem 1 relies on the random restriction and the self-reducibility of the
ODD-MAXBIT𝑛 function.

We will use the following lower bound on the weight of a degree-𝑑 PTF for
ODD-MAXBIT𝑛 due to Beigel [2].

Theorem 3 (Beigel [2]) Suppose that 𝑝 is a PTF for ODD-MAXBIT𝑛. If the degree of
𝑝 is at most 𝑑, then 𝑊 (𝑝) = 2Ω(𝑛/𝑑2) . □
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Proof of Theorem 1. Suppose without loss of generality that 𝑛 is even. Let 𝑝 be any
PTF for ODD-MAXBIT𝑛. We will show that 𝑊 (𝑝) = 2Ω(𝑛1/3) .

Let ℓ := 𝑛1/3. Let 𝑊+(𝑝) denote the sum of absolute coefficients of all terms in 𝑝

whose degree is at least ℓ.
If 𝑊+(𝑝) ≥ 20.1𝑛1/3 , then we are done. We now assume that 𝑊+(𝑝) < 20.1𝑛1/3 .
Let 𝑈 be a uniform distribution over all partial assignments to the input variables

such that 0.1𝑛 variables are set to 0 and remaining 0.9𝑛 variables are unassigned.
We say that a term 𝑡 is hit by a partial assignment 𝜌 ∈ {0, ∗}𝑛 if 𝑡 contains a variable

that is assigned 0 in 𝜌. Obviously, a term is vanished under 𝜌 when it is hit by 𝜌.
Following the standard notation, we write a function 𝑓 or a polynomial 𝑝 under a partial
assignment 𝜌 as 𝑓 |𝜌 or 𝑝 |𝜌, respectively.

For every term 𝑡 in 𝑝 whose degree ℓ′ is at least ℓ, we see that

Pr
𝜌∼𝑈

[𝑡 is not hit by 𝜌]

=

(𝑛−ℓ′
0.1𝑛

)( 𝑛
0.1𝑛

) ≤
(𝑛−ℓ
0.1𝑛

)( 𝑛
0.1𝑛

)
=

𝑛 − ℓ

𝑛
· 𝑛 − ℓ − 1

𝑛 − 1
· · · · · 0.9𝑛 − ℓ + 1

0.9𝑛 + 1

≤
(
𝑛 − ℓ

𝑛

)0.1𝑛

=

(
1 − ℓ

𝑛

)0.1𝑛
≤ 𝑒−0.1ℓ .

By the linearity of expectation, we have

E𝜌∼𝑈 [𝑊+(𝑝 |𝜌)] ≤ 𝑊+(𝑝) · 𝑒−0.1ℓ

< 20.1𝑛1/3 · 𝑒−0.1𝑛1/3
= 𝑜(1),

where the symbol E stands for expectation. This implies that there exists a partial
assignment 𝜌′ ∈ {0, ∗}𝑛 such that 𝜌′ has 0.1𝑛 0’s and 𝑊+(𝑝 |𝜌′) = 0.

We now introduce another partial assignment �̃� ∈ {0, ∗}𝑛 obtained from 𝜌′ by addi-
tionally assigning the value 0 to some other variables. We will ensure that �̃�(𝑥2𝑘−1, 𝑥2𝑘 ) =
(0, 0) or (∗, ∗), for every 1 ≤ 𝑘 ≤ 𝑛/2 and that the number of variables that are assigned
0 is 0.2𝑛.

Precisely, the partial assignment �̃� can be obtained from 𝜌′ by additionally assigning
𝑥2𝑘 := 0 if 𝑥2𝑘−1 is assigned 0 in 𝜌′ and 𝑥2𝑘−1 := 0 if 𝑥2𝑘 is assigned 0 in 𝜌′, for each
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1 ≤ 𝑘 ≤ 𝑛/2. If necessary, we also assign (𝑥2𝑘−1, 𝑥2𝑘 ) := (0, 0) for an appropriate
number of an arbitrarily chosen 𝑘 .

A key to the proof is the self-reducibility of ODD-MAXBIT𝑛, i.e., ODD-MAXBIT𝑛 | �̃�
is equivalent to ODD-MAXBIT𝑛−0.2𝑛 ≡ ODD-MAXBIT0.8𝑛 under a suitable renaming of
input variables. This is clear by considering a decision list representing ODD-MAXBIT𝑛.

Since 𝑊+(𝑝 | �̃�) = 0, 𝑝 | �̃� is a degree-ℓ (=𝑛1/3) PTF for ODD-MAXBIT0.8𝑛. We can
now apply Theorem 3 to obtain 𝑊 (𝑝) ≥ 𝑊 (𝑝 | �̃�) = 2Ω(𝑛1/3) . This completes the proof of
Theorem 1. □

Acknowledgement
This work was supported in part by JSPS Kakenhi No. JP21K19758, JP18K11152 and
JP18H04090.

References
[1] K. Amano and S. Tate, On XOR lemmas for the weight of polynomial threshold

functions, Inf. Comput., 269, article 104439 (2019)

[2] R. Beigel, Perceptrons, PP, and the polynomial hierarchy, Comput. Complex., 4,
339–349 (1994)

[3] A.R. Klivans and R.A. Servedio, Learning DNF in time 2�̃� (𝑛1/3) . J. Comput. Sys.
Sci., 68(2), 303–318 (2004)

[4] R. O’Donnell and R.A. Servedio, Extremal properties of polynomial threshold func-
tions, J. Comput. Sys. Sci., 74(3), 298–312 (2008)

[5] R.A. Servedio, L. Tan and J. Thaler, Attribute-efficient learning and weight-degree
tradeoffs for polynomial threshold functions, Proc. of COLT 2012, 14.1–14.19
(2012)

[6] V. Podolskii and N.V. Proskurin, Polynomial threshold functions for decision lists,
ArXiv:2207.09371 (2022)

4


