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Abstract. In this paper, we introduce the notion of a normal form of one qubit quantum circuits over
the basis {H,P, T}, where H, P and T denote the Hadamard, Phase and π/8 gates, respectively. This
basis is known as the standard set and its universality has been shown by Boykin et al. [FOCS ’99]. Our
normal form has several nice properties: (i) Every circuit over this basis can easily be transformed into a
normal form, and (ii) two normal form circuits perform same computation if and only if both circuits are
identical. We also show that the number of unitary operations that can be represented by a circuit over
this basis that contains at most n T -gates is exactly 192 · (3 · 2n − 2).
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1 Introduction

Quantum computing is a very active area of research
because of its ability to efficiently solve problems for
which no efficient classical algorithms are known. For
example, it is possible for a quantum computer to solve
integer factorization in polynomial time with Shor’s al-
gorithms [7]. However, it is not yet known whether quan-
tum computers are strictly more powerful than classical
computers.

Quantum algorithms are realized by a quantum cir-
cuit consisting of basic gates corresponding to unitary
matrices. In other words, the design of quantum al-
gorithms can be seen as a decomposition of a unitary
matrix into a product of matrices chosen from a basic
set. A discrete set of quantum gates is called univer-
sal if any unitary transformation can be approximated
with an arbitrary precision by a circuit involving those
gates only. For example, Boykin et al. [2] proved that
the basis {H,T,CNOT} is universal, where H, T and
CNOT are called the Hadamard gate, the π/8 gate, and
the controlled-NOT gate, respectively, and given by

H =
1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 eiπ/4

)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The basis {H,T,CNOT} is called the standard set
[6, pp. 195] and plays a fundamental role in the the-
ory of quantum computing as the classical universal set
{AND,NOT} plays in the theory of classical computing.
Note that any 2 × 2 unitary matrix can be decomposed
with given precision as a product of H and T .

The Solovey-Kitaev theorem (see [4] or [6, Appendix
3]) says that polynomial size quantum circuits over this
standard set can solve all the problems in BQP, where
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BQP is the class of problems that can be solved effi-
ciently by quantum computers.

The situation is dramatically changed if we replace
the T -gate by the T 2-gate in this basis. The gate
that performs the unitary operation P = T 2 is known
as the Phase gate. Quantum circuits over the basis
{H,P,CNOT} is usually called stabilizer circuits or clif-
ford circuits. The Gottesman-Knill theorem says that cir-
cuits over this basis {H,P,CNOT} are not more power-
ful than classical computers (see e.g., [6, Chap. 10.5.4]).
A stronger limitation of clifford circuits has also been de-
rived [1, 3]. Recently, Buhrman et al. [3] showed that
every Boolean function that can be computed by a clif-
ford circuit is written as the parity of a subset of input
variables or its negation.

These give an insight that the T -gate is the root of
the power of quantum computing. It may be natural to
expect that the research on the effect of the T -gate may
lead to better understanding of why a quantum computer
can efficiently compute some hard problems.

Throughout this paper, we concentrate on one qubit
circuits over the standard set, i.e., {H,T} and analyze
the properties of them. It seems difficult to give an effi-
cient representation for a given unitary matrix with ele-
ments of such a discrete universal set, because a relation
between a quantum circuit and the corresponding unitary
matrix is not clear. However, if a good representation is
found, it will be useful for designing an efficient quan-
tum circuit. In this paper, we give such a representation
named normal form. We also show that the number of
unitary operations that can be represented by a circuit
over this basis that contains at most n T -gates is exactly
192 · (3 · 2n − 2).

2 The normal form

In this section, We introduce a representation named
normal form for one qubit circuits over the universal basis
{H,T}.

Let C1 be the set of 2 × 2 unitary matrices that can
be represented by a circuit over the basis {H,P}. The
set C1 forms a group known as Clifford group and has
order 192. As usual, a circuit is represented by a string



Figure 1: The normal form

Figure 2: (Left) Cl in Figure 1 denotes the set of shortest
circuits over {H,P} for each matrix in C1, these are de-
noted by 1 ∼ 192 (= |C1|). (Right) A normal form circuit
is corresponding to a path from an arbitrary chosen gate
to one of the rightmost gates in Figure 1.

consisting of symbols each of which represents a gate.
Our normal form is defined recursively as follows (By
convention, when we draw a circuit, the input is on the
right side and the computation proceeds from right to
left) .

(a) For each D ∈ C1, a shortest circuit over {H,P}
that represents D is a normal form (we break ties
arbitrarily).

(b) If C is a normal form whose leftmost (closest to the
output) gate is not T , then each of TC, HTC, and
PHTC is a normal form.

For example, if D is a shortest circuit over {H,P} rep-
resenting an element of C1, then D, TD and PHTHTD
are normal form whereas THPHD and TTD are not.
Equivalently, a normal form circuit is of the form
WnTWn−1T · · ·TW1TW0 for some n ≥ 0 where Wn ∈
{I,H, PH}, Wi ∈ {H,PH} for i = 1, . . . , n − 1, W0 is
a shortest circuit over {H,P} that represents the corre-
sponding element of C1, and I is the 2×2 identity matrix
(see Figures 1 and 2). The set Mn in Figure 1 is defined
as the set of all matrices that can be represented by a
circuit over {H,P, T} that contains at most n T -gates.
Note that M0 = C1.

Our normal form representation is very powerful and
appealing, because it has nice properties as follows:

(1) a normal form circuit has high regularity,

(2) every one qubit circuit over {H,P, T} can easily be
transformed into an equivalent normal form circuit,

(3) two normal form circuits represents same matrix if
and only if both circuits are identical (comparison
can be made as a string).

(3) is a surprising property. This enables us to decide
whether two normal form circuits perform same compu-
tation without calculating the matrix product.

Remark 1 In this paper, we concentrate on circuits over
the basis {H,P, T}. However, we can also define a nor-
mal form for circuits over other bases. For example, for
circuits over the basis {R,P, T}, where R = P 2H, we
can show that if we replace H with R in the definition of
our normal form, then the modified normal form satisfies
all the above properties.

Our main result can be stated as follows.

Theorem 1 Let f be the map from the set of all normal
form circuits to the group generated by two matrices H
and T defined by f (C) = U , where C is a normal form
circuit and U is the corresponding matrix. Then f is a
bijection.

Theorem 1 can also be used to estimate the number
of 2 × 2 unitary matrices represented by a circuit over
{H,P, T} with at most n T -gates.

Corollary 2 For all nonnegative integers n, |Mn| =
|C1| · (3 · 2n − 2) = 192 · (3 · 2n − 2) .

Note that the number becomes 24·(3 · 2n − 2) when we
identify two operations that are the same up to a global
phase.

The proofs are omitted in this version due to space
limitations. The details appear in a full version of the
paper [5].
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