On the Size of Depth-2 Threshold Circuits for the Inner Product Mod 2 Function

Kazuyuki Amano (Gunma Univ., Japan)

LATA2020&2021 2021/9/21

1

Threshold Gate (THR)

$$
y = \begin{cases} 1, & \text{if } w_1 x_1 + w_2 x_2 + \dots + w_n x_n \ge t \\ 0, & \text{otherwise} \end{cases}
$$

Note: All weights are integer (w.l.o.g.)

Threshold Circuit

A circuit that consists of threshold gates.

Inner Product mod 2

$$
\mathsf{IP}_n: \{0,1\}^{2n} \to \{0,1\}
$$

$$
\mathsf{IP}_n(x_1, \ldots, x_n, y_1, \ldots, y_n) := \bigoplus_{i=1}^n (x_i \land y_i)
$$

(XOR of bit-wise AND of two n-bit inputs)

What is the minimum size (i.e., # of gates) of a depth-two threshold circuit that computes IP_n?

Motivation

・Depth-two threshold circuit is a current frontier in circuit lower bounds

・At present, we can't refute that every Boolean function in NP can be computed by a poly-size (or even $O(n^2)$ -size) depth-two threshold circuit.

• If weights are polynomially bounded, then an exponential lower bound is known, e.g., for Inner Product function. [Hajnal et al., 1993] Inner Product function is a good candidate for proving an exponential lower bound for depthtwo threshold circuit.

Best known lower bound is $\Omega(n)$. [Roychowdhury et. al, 1994]

Question: What is the minimum size of a depth-two threshold circuit that computes IP_n?

Easy for depth 3

$IP_n(x_1, ..., x_n, y_1, ..., y_n) := \bigoplus_{i=1}^n (x_i \wedge y_i)$

Easy for depth 3

 $IP_n(x_1, ..., x_n, y_1, ..., y_n) := \bigoplus_{i=1}^n (x_i \wedge y_i)$

- 1. Non-trivial construction (of size $O(1.682^n)$) of depth-two threshold circuits that computes IP_n
- 2. An exponential lower bound for a special form of depth-two circuit that computes IP_n .

Naïve Construction

$$
\mathsf{IP}_n(x_1, \ldots, x_n, y_1, \ldots, y_n) := \bigoplus_i (x_i \land y_i)
$$

DNF (Disjunctive Normal Form)

 $= x_1 y_1 \overline{x}_2 \vee x_1 y_1 \overline{y}_2 \vee \overline{x}_1 x_2 y_2 \vee \overline{y}_1 x_2 y_2$ (when $n = 2$)

∨ $O(3^n)$ # of gates $=$ # of terms

Naive Construction

$IP_n(x_1, ..., x_n, y_1, ..., y_n) := \bigoplus_i (x_i \wedge y_i)$

$$
= \sum_{0 \neq S \subseteq \{1, ..., n\}} (-2)^{|S|-1} \prod_{i \in S} x_i y_i.
$$

(Inclusion-Exclusion formula)

$O(1.682^n)$ IP_n has a depth-two threshold circuit of size

Step 1: Construct an efficient THR of ETHR circuit that computes IP_k for small k.

Step 2: Use this as a building block to construct a circuit for IP_n for general n.

ETHR (Exact Threshold Gate)

$$
\begin{cases}\ny = \begin{cases}\n1, & \text{if } w_1 x_1 + w_2 x_2 + \dots + w_n x_n = t \\
0, & \text{otherwise.}\n\end{cases}\n\end{cases}
$$

・An ETHR gate can be simulated by two THR gates

$$
[\![\ell(x) = t]\!] = [\![\ell(x) \ge t]\!] - [\![\ell(x) \ge t+1]\!]
$$

・Conversely, a THR gate can be simulated by polynomial number of ETHR gates [Hansen, Podolskii,'10] but we don't need this today…

・ETHR gates is closed under AND operation [Hansen, Podolskii, '10]

e.g.,
\n
$$
[\![\ell_1(x) = t_1]\!] \wedge [\![\ell_2(x) = t_2]\!]
$$
\n
$$
= [\![10000\ell_1(x) + \ell_2(x)] = 10000t_1 + t_2]\!]
$$

17

With the help of computers, we found that

IP_4 can be represented by the sign of the linear combination of 8 ETHR gates

With the help of computers, we found that

 IP_4 can be represented by the sign of the linear combination of 8 ETHR gates

$$
IP_4(x_1, ..., x_4, y_1, ..., y_4) = sgn\left(-3 + 2\sum_{i \in [7]} g_i(z_1, z_2, z_3, z_4)\right).
$$

 g_1,\ldots,g_7 $[-z_1 + z_2 + z_3 + z_4 = 1],$ $\llbracket z_1 + z_2 - z_3 + z_4 = 1 \rrbracket$, $[[z_1 - z_2 - z_3 + z_4 = 0]],$ $\llbracket z_1 + z_2 - z_3 - z_4 = 0 \rrbracket.$

$$
[[z1 - z2 + z3 + z4 = 1]],
$$

\n
$$
[[z1 + z2 + z3 - z4 = 1]],
$$

\n
$$
[[z1 - z2 + z3 - z4 = 0]],
$$

 $z_i := x_i + y_i$

19

$IP_4 = sign (\text{ } \textcircled{\text{}} + \cdots + \textcircled{\text{}})$ 8

$IP_4 = sign (\quad (\equiv) + \cdots + (\equiv))$ 8

If we assume that

"+" represents 0 and "-" represents 1,

then sign(x) \bigoplus sign(y) = sign(x·y)

$$
IP_4 = sign \left(\bigcirc \bigcirc + \cdots + \bigcirc \bigcirc \right)
$$

If we assume that

" $+$ " represents 0 and " $-$ " represents 1,

then sign(x) \bigoplus sign(y) = sign(x⋅y)

$$
IP_8 = IP_4 \oplus IP_4
$$

= sign ((\supseteq + ... + \supseteq)(\supseteq + ... + \supseteq))

$$
IP_n = sign \left(\left(\begin{array}{c} \boxed{\bigcirc} + \cdots + \boxed{\bigcirc} \right)^{n/4} \end{array} \right)
$$

• ETHR gates is closed under AND operation

[Hansen, Podolskii, '10]

Key Fact 1

. An ETHR gate can be simulated by two THR gates

 $[\ell(x) = t] = [\ell(x) \ge t] - [\ell(x) \ge t + 1]$

$$
IP_n = sign \left(\frac{1}{1000} + \frac{1}{1000} + \cdots + \frac{1}{1000} \right)
$$

Key Fact 1

• An ETHR gate can be simulated by two THR gates

$$
[\![\ell(x) = t]\!] = [\![\ell(x) \ge t]\!] - [\![\ell(x) \ge t+1]\!]
$$

IP_n = sign (
$$
\bigoplus
$$
 + \bigoplus + ... + \bigoplus)
\n8n/4
\n8n/4
\n \bigoplus 8n/4
\n \bigoplus

 $2 \cdot 8^{n/4} = O(1.682^n)$

q.e.d

Some generalization

 IP_k can be represented by the sign of the linear combination of m ETHR gates

A THR of THR circuit of size $\mathit{O}\left((m^{1/k})^n\right)$

Our construction:

 $(k,m) = (4,8) \rightarrow O(1.682^n)$

29 For example, $(k, m) = (5, 13)$ would imply $O(1.6803^n)$ bound

- 1. Non-trivial construction (of size $O(1.682^n)$) of depth-two threshold circuits that computes IP_n
- 2. An exponential lower bound for a special form of depth-two circuit that computes IP_n .

A gate that computes a symmetric function, i.e., its output $y \in \{0,1\}$ depends only on the # of ones in inputs $x_1, ..., x_n$.

A SYM gate can emulate PARITY, MOD, unweighted MAJORITY, etc.

Every THR-SYM circuit computing IP_n has size $\Omega(1.5^n)$ Theorem

improving $\Omega(1.414^n)$ bound by Forster et al. (2001)

Linear Programming

Theorem [A, MFCS '05]

The obj. of the following LP gives a lower bound on the size of THR-SYM circuit for IP_n

Minimize
$$
\sum_{T \subseteq X_k} q_T,
$$

\nSubject to
$$
\sum_{T: v \in T} q_T \ge z_{k-1} \quad (v \in X_k),
$$

\n
$$
\sum_{T: | \{u, v\} \cap T | = 1} q_T \ge z_{k-2} \left(\begin{array}{l} i, j \in [k], i \ne j \\ u \in \{x_{2i-1}, x_{2i}\}, v \in \{x_{2j-1}, x_{2j}\} \end{array} \right),
$$

\n
$$
q_T \ge 0 \quad (T \subseteq X_k).
$$

33

… and It's Dual

Maximize
$$
z_{k-1} \sum_{v \in [2k]} s_v + z_{k-2} \sum_{\{u,v\} \in Z_k} t_{u,v},
$$

\nSubject to
\n
$$
\sum_{v \in [2k]:x_v=1} s_v + \sum_{\{u,v\} \in Z_k: x_u \neq x_v} t_{u,v} \le 1 \quad (x \in \{0,1\}^{2k}),
$$
\n
$$
s_v \ge 0 \qquad (v \in [2k]),
$$
\n
$$
t_{u,v} \ge 0 \qquad (\{u,v\} \in Z_k).
$$

LP duality theorem says that any feasible solution to this dual problem gives a lower bound.

… and It's Dual

Maximize
$$
z_{k-1} \sum_{v \in [2k]} s_v + z_{k-2} \sum_{\{u,v\} \in Z_k} t_{u,v},
$$

\nSubject to
\n
$$
\sum_{v \in [2k]:x_v=1} s_v + \sum_{\{u,v\} \in Z_k: x_u \neq x_v} t_{u,v} \le 1 \quad (x \in \{0,1\}^{2k}),
$$
\n
$$
s_v \ge 0 \qquad (v \in [2k]),
$$
\n
$$
t_{u,v} \ge 0 \qquad (\{u,v\} \in Z_k).
$$

LP duality theorem says that any feasible solution to this dual problem gives a lower bound.

Theorem

Every THR-SYM circuit computing IP_n has size $\Omega(1.5^n)$

35

Summary & Future work

- 1. $O(1.682^n)$ upper bound on the size of a depth-two threshold circuit for IP_n .
	- ・Find a small circuit by a computer and then blow-up.
	- ・A constant may be improved.
	- ・Sub-exponential bound seems to be challenging.

Summary & Future work

- 1. $O(1.682^n)$ upper bound on the size of a depth-two threshold circuit for IP_n .
	- ・Find a small circuit by a computer and then blow-up.
	- ・A constant may be improved.
	- ・Sub-exponential bound seems to be challenging.
- 2. $\Omega(1.5^n)$ lower bound on the size of a THR-SYM circuit for IP_n
	- ・Give a solution to the dual of LP whose obj. gives a lower bound on circuit size.
	- ・Can we extend the method to THR-THR circuits?

37

Fin. Thank you.