On the Size of Depth-2 Threshold Circuits for the Inner Product Mod 2 Function

Kazuyuki Amano (Gunma Univ., Japan)

LATA2020&2021 2021/9/21

Threshold Gate (THR)

$$y = \begin{cases} 1, & \text{if } w_1 x_1 + w_2 x_2 + \dots + w_n x_n \ge t \\ 0, & \text{otherwise} \end{cases}$$

Note: All weights are integer (w.l.o.g.)

Threshold Circuit

A circuit that consists of threshold gates.

Inner Product mod 2

$$\begin{aligned} \mathsf{IP}_{n}: \{0,1\}^{2n} &\to \{0,1\} \\ \mathsf{IP}_{n}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n}) &\coloneqq \bigoplus_{i=1}^{n} (x_{i} \wedge y_{i}) \end{aligned}$$

(XOR of bit-wise AND of two n-bit inputs)

What is the minimum size (i.e., # of gates) of a depth-two threshold circuit that computes IP_n ?

Motivation

 Depth-two threshold circuit is a current frontier in circuit lower bounds

• At present, we can't refute that every Boolean function in NP can be computed by a poly-size (or even $O(n^2)$ -size) depth-two threshold circuit.

• If weights are polynomially bounded, then an exponential lower bound is known, e.g., for Inner Product function.

[Hajnal et al., 1993]

Inner Product function is a good candidate for proving an exponential lower bound for depthtwo threshold circuit.

Best known lower bound is $\Omega(n)$. [Roychowdhury et. al, 1994]

Question: What is the minimum size of a depth-two threshold circuit that computes IP_n?

Easy for depth 3

$\mathsf{IP}_n(x_1, \dots, x_n, y_1, \dots, y_n) \coloneqq \bigoplus_{i=1}^n (x_i \wedge y_i)$

Easy for depth 3

 $\mathsf{IP}_n(x_1, \dots, x_n, y_1, \dots, y_n) \coloneqq \bigoplus_{i=1}^n (x_i \wedge y_i)$

- 1. Non-trivial construction (of size $O(1.682^n)$) of depth-two threshold circuits that computes IP_n
- 2. An exponential lower bound for a special form of depth-two circuit that computes IP_n.

Naive Construction

$$\mathsf{IP}_n(x_1, \dots, x_n, y_1, \dots, y_n) \coloneqq \bigoplus_i (x_i \wedge y_i)$$

DNF (Disjunctive Normal Form)

 $= x_1 y_1 \overline{x}_2 \vee x_1 y_1 \overline{y}_2 \vee \overline{x}_1 x_2 y_2 \vee \overline{y}_1 x_2 y_2$ (when n = 2)

of gates = # of terms $O(3^n)$

Naive Construction

$$\mathsf{IP}_n(x_1, \dots, x_n, y_1, \dots, y_n) := \bigoplus_i (x_i \wedge y_i)$$
$$= \sum_{\emptyset \neq S \subseteq \{1, \dots, n\}} (-2)^{|S|-1} \prod_{i \in S} x_i y_i.$$

(Inclusion-Exclusion formula)

IP_n has a depth-two threshold circuit of size $O(1.682^n)$

Step 1: Construct an efficient THR of ETHR circuit that computes IP_k for small k.

Step 2: Use this as a building block to construct a circuit for IP_n for general n.

ETHR (Exact Threshold Gate)

$$y = \begin{cases} 1, & \text{if } w_1 x_1 + w_2 x_2 + \dots + w_n x_n = t \\ 0, & \text{otherwise.} \end{cases}$$

• An ETHR gate can be simulated by two THR gates

$$[\![\ell(x) = t]\!] = [\![\ell(x) \ge t]\!] - [\![\ell(x) \ge t + 1]\!]$$

• Conversely, a THR gate can be simulated by polynomial number of ETHR gates [Hansen, Podolskii,'10] but we don't need this today...

• ETHR gates is closed under AND operation [Hansen, Podolskii, '10]

e.g.,

$$\llbracket \ell_1(x) = t_1 \rrbracket \land \llbracket \ell_2(x) = t_2 \rrbracket$$

$$= \llbracket 10000\ell_1(x) + \ell_2(x) = 10000t_1 + t_2 \rrbracket$$

With the help of computers, we found that

 $\rm IP_4$ can be represented by the sign of the linear combination of 8 ETHR gates

With the help of computers, we found that

IP₄ can be represented by the sign of the linear combination of 8 ETHR gates

$$\mathsf{IP}_4(x_1,\ldots,x_4,y_1,\ldots,y_4) = \mathsf{sgn}\left(-3+2\sum_{i\in[7]}g_i(z_1,z_2,z_3,z_4)\right).$$

 g_1, \dots, g_7 $[[-z_1 + z_2 + z_3 + z_4 = 1]],$ $[[z_1 + z_2 - z_3 + z_4 = 1]],$ $[[z_1 - z_2 - z_3 + z_4 = 0]],$ $[[z_1 + z_2 - z_3 - z_4 = 0]].$

$$\begin{bmatrix} z_1 - z_2 + z_3 + z_4 = 1 \end{bmatrix},$$

$$\begin{bmatrix} z_1 + z_2 + z_3 - z_4 = 1 \end{bmatrix},$$

$$\begin{bmatrix} z_1 - z_2 + z_3 - z_4 = 0 \end{bmatrix},$$

 $z_i := x_i + y_i$

$IP_4 = sign \left(\underbrace{=} + \cdots + \underbrace{=} \right)$

$IP_4 = sign \left(\underbrace{=} + \cdots + \underbrace{=} \right)$

If we assume that

"+" represents 0 and "-" represents 1,

then sign(x) \oplus sign(y) = sign(x·y)

$$IP_4 = sign \left(\underbrace{=} + \cdots + \underbrace{=} \right)$$

If we assume that

"+" represents 0 and "-" represents 1,

then sign(x) \oplus sign(y) = sign(x·y)

$$IP_8 = IP_4 \oplus IP_4$$

= sign (((=) + ... + (=))((=) + ... + (=)))

$$IP_n = sign \left(\left(\underbrace{=} + \cdots + \underbrace{=}^{n/4} \right) \right)$$

• ETHR gates is closed under AND operation

[Hansen, Podolskii, '10]

Key Fact 1

• An ETHR gate can be simulated by two THR gates

 $[\![\ell(x)=t]\!]=[\![\ell(x)\geq t]\!]-[\![\ell(x)\geq t+1]\!]$

$$IP_n = sign \left(\underbrace{=}_{8n/4} + \underbrace{=}_{8n/4} + \cdots + \underbrace{=}_{8n/4} \right)$$

Key Fact 1

• An ETHR gate can be simulated by two THR gates

 $[\![\ell(x)=t]\!]=[\![\ell(x)\geq t]\!]-[\![\ell(x)\geq t+1]\!]$

$$IP_{n} = sign \left(\begin{array}{c} = + = + \cdots + = \end{array} \right)$$

$$8^{n/4}$$
of gates:

 $2 \cdot 8^{n/4} = O(1.682^n)$

q.e.d

Some generalization

 IP_k can be represented by the sign of the linear combination of m ETHR gates

A THR of THR circuit of size $O((m^{1/k})^n)$

Our construction:

 $(k,m) = (4,8) \rightarrow O(1.682^n)$

For example, (k,m) = (5,13) would imply $O(1.6803^n)$ bound

- 1. Non-trivial construction (of size $O(1.682^n)$) of depth-two threshold circuits that computes IP_n
- 2. An exponential lower bound for a special form of depth-two circuit that computes IP_n.

A gate that computes a symmetric function, i.e., its output $y \in \{0,1\}$ depends only on the # of ones in inputs $x_1, ..., x_n$.

A SYM gate can emulate PARITY, MOD, unweighted MAJORITY, etc.

Theorem Every THR-SYM circuit computing IP_n has size $\Omega(1.5^n)$

improving $\Omega(1.414^n)$ bound by Forster et al. (2001)

Linear Programming

Theorem [A, MFCS '05]

The obj. of the following LP gives a lower bound on the size of THR-SYM circuit for IP_{n}

... and It's Dual

LP duality theorem says that any feasible solution to this dual problem gives a lower bound.

... and It's Dual

LP duality theorem says that any feasible solution to this dual problem gives a lower bound.

- Theorem

Every THR-SYM circuit computing IP_n has size $\Omega(1.5^n)$

Summary & Future work

- 1. $O(1.682^n)$ upper bound on the size of a depth-two threshold circuit for IP_n.
 - Find a small circuit by a computer and then blow-up.
 - A constant may be improved.
 - Sub-exponential bound seems to be challenging.

Summary & Future work

- 1. $O(1.682^n)$ upper bound on the size of a depth-two threshold circuit for IP_n.
 - Find a small circuit by a computer and then blow-up.
 - A constant may be improved.
 - Sub-exponential bound seems to be challenging.
- 2. $\Omega(1.5^n)$ lower bound on the size of a THR-SYM circuit for IP_n
 - Give a solution to the dual of LP whose obj. gives a lower bound on circuit size.
 - Can we extend the method to THR-THR circuits?

Fin. Thank you