
Lower Bounds for the Total Stopping Time of 3x + 1

Iterates Revisited

Kazuyuki Amano∗

October 2021

Abstract

Let T : N → N be the 3x + 1 function defined by T (n) = n/2 if n is even and
T (n) = (3n+1)/2 if n is odd. Let σ∞(n) be the minimal k such that T (k)(n) = 1 if one
exists and +∞ otherwise. By extending the computational efforts by Applegate and
Lagarias (Math. Comp., 2003), we show that σ∞(n) ≥ ( 1

2
ln 4

3
)−1 lnn ≈ 6.9521 lnn for

infinitely many n, improving the former bound of σ∞(n) > 6.1413 lnn. The certificate
of our proof consists of 19, 065, 883, 794 critical paths each for a different 3x+ 1 tree of
max-depth 74.

1 Introduction

Let T : N → N be the function defined by

T (n) =


n

2
, if n ≡ 0 (mod 2),

3n+ 1

2
, if n ≡ 1 (mod 2).

The Collatz conjecture (or 3x + 1 conjecture) asserts that, for every n ≥ 1, there exists
some iterate k such that T (k)(n) = 1. At present, the conjecture remains unsolved. See e.g.,
Lagarias [4] and Chamberland [3] for an overview of the conjecture, and also Tao [7] for a
recent exciting development.

This work focuses on the stopping time of n, which is defined by the minimal k such that
T (k)(n) = 1 and is denoted by σ∞(n). If no such k exists, then we let σ∞(n) = +∞. A
stopping time ratio γ(n) of n is defined by

γ(n) :=
σ∞(n)

lnn
.

If we assume that the parity of T (1)(n), T (2)(n), . . . , T (k)(n) behaves like a random bit,
then the process of iterating the function T (·) can be modeled as a random walk starting
at the position lnn and making a step of length ln(1/2) or (approximately) ln(3/2) with
probability 1/2. This leads to the conjecture that an expected stopping time ratio should

be γ0 :=
(
1
2 ln

4
3

)−1 ≈ 6.95212. See e.g., [2, 5] for more detailed analysis of such stochastic
models.
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In [1], Applegate and Lagarias introduced a way for giving an infinite sequence of n such
that γ(n) is large. Then, by conducting a massive computation, they obtained a certificate
showing that there is an infinite set of positive integers n such that γ(n) is finite and

γ(n) ≥ 29

29 ln 2− 14 ln 3
≈ 6.141316. (1)

The certificate of this lower bound is huge. It consists of 350,688,758 critical paths each for a
different 3x+1 tree of max-depth 60. (Some of the terminologies will be explained in Section
2.) However, this is not enough for proving a lower bound of γ(n) ≥ γ0 for infinitely many
n, which is certainly satisfied in view of the random walk model. Lagarias [4, Section 8] said
that the situation that we do not have a proof for the γ0 lower bound is “scandalous”.

This work is devoted to improving the lower bound of (1) to γ0 ≈ 6.95212 by extending
their efforts two decades ago. We apply their framework in a parallel fashion together with
some pruning techniques. After a computation of an about one CPU year, we finally obtain
a certificate proving the desired bound of γ(n) ≥ γ0 (for infinitely many n). The certificate
consists of 19, 065, 883, 794 critical paths each for a different 3x+ 1 tree of max-depth 74.

The rest of this paper is organized as follows. In Section 2, we briefly sketch the framework
for deriving a lower bound on γ(n) developed by Applegate and Lagarias [1]. Then, in Section
3, we describe our computational efforts for deriving an improved bound. Finally, we make
some concluding remarks in Section 4.

2 Certificate for Large Stopping Time

In order to prove σ∞(n) ≥ γ0 lnn for infinitely many n, we essentially follow the framework
developed by Applegate and Lagarias [1]. Below we briefly sketch an idea in a somewhat
intuitive way. See [1] for a clearer and more detailed exposition. In the following, the
“threshold” value α appeared in Section 3 of [1] is fixed to 1/2 since our aim is to obtain a
certificate of γ(n) ≥ γ0.

We consider a “prunned” inverse map T ∗(−1) on the set of positive integers n ̸≡ 0 (mod 3)
given by

T ∗(−1)(n) =


{2n}, if n ≡ 1, 4, 5 or 7 (mod 9),{
2n,

2n− 1

3

}
, if n ≡ 2 or 8 (mod 9).

The word “prunned” represents that we discard integers with n ≡ 0 (mod 3) since they will
only produce a linear chain of integers with n′ ≡ 0 (mod 3) (see [5]).

Given an integer n ∈ N, we can generate a tree such that the root node is n and a node
labelled m at depth d of the tree is connected to a node labelled T ∗(−1)(m) of depth d + 1.
Then, we label each edge by 1 if an integer labelled at the sink of the edge is odd, and by 0
otherwise. The weight w(n) is defined by the number of edges that are labeled 1 on the path
between the root and the leaf labeled n, and the ones-ratio ρ(n) of this path is defined by
w(n) divided by the length of the path.

By recalling the definition of the function T , it is easy to see that

γ(n) ≥ 1

ln 2− ρ(n) ln 3
.

Hence, in order to obtain a good lower bound on γ(n), our task is to obtain a good lower
bound on ρ(n). A bound of ρ(n) ≥ 1/2 corresponds to the bound of γ(n) ≥ γ0. Roughly
speaking, what we will see is that, there is an infinitely long path satisfying that the path
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can be divided into chunks of small length such that the ones-ratio of each chunk is at least
1/2.

A path from a leaf to the root in a tree truncated at some depth is called a critical path
if the ones-ratio of the path is at least 1/2. The key observation is that, if a ≡ b (mod 3l+1),
the tree with root a and the one with root b are isomorphic (including the labels of edges) if
we truncate the trees at depth k at which it has a critical path of weight l for the first time.
For example, the following is a critical path of weight l = 3 starting from 5.

5
0−→ 10

0−→ 20
1−→ 13

0−→ 26
1−→ 17

1−→ 11.

One can see that every integer a such that a ≡ 5 (mod 34) has an isomorphic path starting
from a.

By these arguments, our task can be reduced to find a certificate consists of (i) a finite
list C of residue classes a (mod 3l+1) for various length l = l(a) which forms a ternaly prefix
code, and (ii) a list of critical paths in the pruned tree with root a, over all a in C. Once
we have such a certificate, we can make a path consists of an infinite number of chunks such
that each chunk has ones-ratio at least 1/2 by chaining critical paths in an appropriate way.
See Section 3 in [1] for a formal definition of a certificate and a proof on why it yields a lower
bound.

3 Finding a Certificate

For searching a certificate, we apply a greedy algorithm developed by Applegate and Lagarias
[1, Section 4]. For a given a (mod 3l+1), we generate a tree for the map T ∗(−1)(·) starting
from a in the breadth first manner to find a critical path of length 2l. If no such path exists,
we add 3a, 3a + 1, 3a + 2 to the list of open vectors with l incremented by one. However,
a naive approach seems infeasible since the maximum depth of a tree that needed to be
enumerated has been estimated around 72 to 76 [1], and the expected number of leaves of a
tree of depth k is the order of (4/3)k [5, Section 3].

In order to reduce the computation time, we conduct a search in parallel and also introduce
some pruning techniques. First, we compute a list of critical paths for small values of l (say,
l ≤ 14), and keep the list of open vectors for l = 15. The list has 2,563,281 entries. Then,
we distribute these vectors to many threads and continue the computation in parallel.

For pruning, we made look-up tables for a possible maximum “gain” of various starting
integers, i.e., the maximum value of the number of ones minus the number of zeros of the edge
labels over all paths in a tree of some fixed depth. This works since a tree of depth d can be
fully characterized by its root modulo 3d+1. In our computation, we used tables for various
depths up to 15 to cut off unnecessary nodes efficiently. This speeds up the computation by
roughly 10 times.

We run the code using three standard PCs. The whole computation took about two
weeks using maximum of about 40 threads. This means that if we run our code on a single
thread machine, then the computation takes about one year. Finally, we obtain the desired
certificate consists of 19, 065, 883, 794 critical paths each for a different 3x + 1 tree. The
max-depth of a tree that needed to be enumerated, which is equal to the max-length of a
critical path, is 74.

This establishes the following theorem.

Theorem 1 There is an infinite set of positive integers n such that γ(n) is finite and γ(n) ≥(
1
2 ln

4
3

)−1 ≈ 6.95212. □
A part of the certificate is shown in Table 1, and the breakdown of the size of the certificate

with respect to l is shown in Table 2. The code that we used for finding them together with
some data is available at https://gitlab.com/KazAmano/collatz.
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Table 1: Certificate for proving γ(n) ≥ γ0 for infinitely many n. We only show critical
paths for l ≤ 5 and the last three for l = 37 (of length 2l = 74). The columns represent a
(mod 3l+1) (in reverse ternaly and then in decimal), l, critical path and an integer at the
terminal of the critical path when starting from a, respectively.

a l crit.path terminal

10 (1) 1 01 1

20 (2) 1 1 1

11 (4) 1 01 5

22 (8) 1 1 5

2100 (5) 3 001011 11

2102 (59) 3 001011 139

21100 (14) 4 00101011 43

21101 (95) 4 00101011 299

12111 (123) 4 00010111 391

12112 (205) 4 00010111 647

210110 (113) 5 0000111011 475

210111 (356) 5 0000111011 1499

211101 (284) 5 0010101011 1195

211102 (527) 5 0010101011 2219

212110 (131) 5 0000110111 551

212112 (617) 5 0000110111 2599

120021 (412) 5 0001010111 1735

120022 (655) 5 0001010111 2759

121210 (151) 5 0001011011 635

121212 (637) 5 0001011011 2683

· · · 19, 065, 883, 771 lines are omitted due to the space restriction. · · ·

a l crit.path terminal

12222201121111021122111012022122102010 37 0001000101100011010110001011001001001→ 7848063225965413510427

(187080808736798062) →1011000000110111001001111010111111011

12222201121111021122111012022122102011 37 0001000101100011010100100110001100000→ 26737529157443994365359

(637364714627795425) →1011011001111001101011101111000101111

12222201121111021122111012022122102012 37 0001000101100011010110001011001001001→ 45626995088922575219995

(1087648620518792788) →1011000000110111001001111010111111011
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Table 2: The breakdown of the certificate with respect to the value of l.

l # of crit.paths l # of crit.paths l # of crit.paths

1 4 14 159,336 27 3,196,943,303

2 0 15 453,340 28 3,416,750,430

3 2 16 1,260,293 29 2,942,079,419

4 4 17 3,401,901 30 1,948,191,245

5 10 18 8,925,553 31 943,786,096

6 28 19 22,496,469 32 315,669,869

7 82 20 54,348,400 33 67,543,670

8 242 21 124,688,261 34 8,465,899

9 714 22 269,621,335 35 563,978

10 2,119 23 542,983,077 36 16,852

11 6,298 24 1,006,813,061 37 186

12 18,660 25 1,688,508,366 ----- ------------

13 54,992 26 2,502,130,300 Total 19,065,883,794

4 Concluding Remarks

In this work, we give a certificate of the proof that γ(n) ≥ γ0 ≈ 6.95212 infinitely often, which
corresponds to an expected hitting time of the random walk model. By using the Chernoff
Bounds, we can see that such a model predicts that lim supn→∞ γ(n) is a certain constant
about 41.678 (see [5] for the proof). It would be challenging to find an integer n such that
γ(n) is larger than this limit (if one exists). To the best of our knowledge, the current record
is n = 7, 219, 136, 416, 377, 236, 271, 195 with γ(n) ≈ 36.7619 [6, 3x + 1 Completeness and
Gamma Records].
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